
Proc. Assoc. Advmt. Anim. Breed. Genet. 26: 379-382 

379 

CONSIDERATIONS IN IMPUTATION OF SKIM SEQUENCED DATA 
 

M.S. Tahir1, J. Wang1, A.J. Chamberlain1,2, C.M. Reich1, B.A. Mason1 and I.M. 
MacLeod1,2 

 
1 Agriculture Victoria, Centre for AgriBioscience, Bundoora, VIC, 3083 Australia 

2 School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083 Australia 
 

SUMMARY 
Skim sequencing genotypes have become a cost-effective alternative to standard SNP array 

genotypes for genomic studies. However, compared to deep sequencing, skim sequencing suffers 
from randomly missing or inaccurate genotypes. The true genotypes can often be recovered with 
imputation using high-quality sequenced reference population genotypes. We skim-sequenced 293 
cattle at 1x depth at an estimated cost of 36 AUD per sample. We aligned the skim sequence data of 
each animal to the bovine reference genome and imputed it to the whole genome sequence using 
GLIPMPSE2. Two imputed genotypes metrics (dosage: probability of called genotype and best-
guess: 0, 1, or 2), called by GLIMPSE2, were compared to the real genotypes of the same animals 
with custom XT-50K SNP bead-chip to calculate per-SNP and per-animal imputation accuracy. The 
per-SNP and per-animal imputation accuracy with dosage genotypes were found to be 0.96 and 0.97, 
respectively. Sequencing depth of whole genome, imputation chunks, and 5kb windows around 
variants was determined for all animals and compared to the per-animal imputation accuracy. The 
correlation between the mean genome sequencing depth and imputation accuracy (per-animal) 
across all animals was weak (0.04). However, the difference in the mean sequencing depths of the 
whole genome, imputation chunks, and 5kb windows around variants between the animals with 
highest and lowest imputation accuracy was significant. The findings of this study show that skim 
sequence genotypes imputed with deeper sequenced reference population were highly accurate and 
cost-effective. Optimising the depth of skim sequencing can further improve the imputation 
accuracy. 

 
INTRODUCTION 

Skim sequencing, also known as low-coverage (< 3X) whole genome sequencing, has emerged 
as a cost-competitive alternative to standard SNP array genotyping (Li et al. 2021). It can capture 
the existing array-based SNPs as well as new variants in individual animals. A disadvantage of skim 
sequencing is missing information for some random genomic regions. This results in either sporadic 
missing genotypes or inaccurate genotypes. Missing information in skim sequence can be recovered 
with imputation using a high-quality deep-sequenced reference population (Pasaniuc et al. 2012). 

Imputation methodology and landscape of sequencing depth can impact the final accuracy of the 
skim-sequence imputed genotypes (Al Bkhetan et al. 2019). For example, Beagle (Browning and 
Browning 2007) is highly accurate for imputation of variant genotypes to whole-genome sequence 
but showed relatively low imputation accuracy when used with skim-sequenced samples (Daetwyler 
et al. 2021) since it was not developed for such data. New imputation tools like GLIMPSE2 
(Rubinacci et al. 2023) and QUILT (Davies et al. 2021) have been developed specifically to impute 
skim-sequenced data. Both tools are reported to show similar imputation accuracy, but GLIMPSE2 
is computationally more efficient compared to QUILT (Rubinacci et al. 2023). 

In livestock, it is important to maintain continuity between new and old genotyping platforms so 
that genetic evaluations relying on a particular variant panel are not negatively affected. In this study, 
GLIMPSE2 was used to impute skim-sequenced data of 293 cattle to the whole genome sequence 
(WGS) level. The empirical accuracy of imputation was tested for the variants that overlapped a 
custom XT-50K variant panel used for genetic evaluations in the Australian dairy industry (Xiang et 
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al. 2021). We also tested the impact of skim-sequencing depth of target samples on imputation 
accuracy. 

 
MATERIALS AND METHODS 

A total of 293 (142 Holstein, 148 Jersey, and 3 crossbred) animals were skim-sequenced to an 
average 1x coverage costing 36 AUD per sample. Sequences were aligned to the bovine reference 
genome using BWA (Li et al. 2009). The aligned bam files were used as input for the imputation 
pipeline. Run8 of the 1,000 bull genomes project was used as the imputation reference with 4,118 
animals of various Bos. taurus breeds. GLIMPSE2, with default parameters, was used to impute 
genotypes for 39,457,248 variants. It splits the reference genotypes into imputation chunks, phases 
the target samples using pre-phased information from the split chunks of the reference panel, imputes 
the missing genotypes, and then ligates the imputed chunks of the target samples. We also tested 
non-default values for parameters like imputation chunk size 18 Mb (default=4 Mb), and effective 
population sizes 1,000 and 10,000 (default=100,000). 

GLIMPSE2 provides two metrics of imputed genotypes: 1) dosage, the estimated alternative 
allele dosage (a continuous metric of probability of genotype called), and 2) best-guess, the genotype 
called (0, 1, or 2) based on estimated allele dosage. The per variant and per animal empirical 
accuracy of imputation was calculated as a correlation between imputed genotypes (dosage and best-
guess) and quality-filtered real genotypes of 32,614 variants (32,045 SNPs and 569 indels) 
genotyped for the same 293 animals using a custom XT-50K bead-chip. The 17 animals with the 
highest (≥ 0.99) and 17 animals with the lowest (< 0.75) imputation accuracy (per animal) were 
selected as two groups to check the impact of sequencing depth on imputation accuracy. 

GLIMPSE2 provided the average sequence depth of all imputed chromosome chunks for each 
animal. In addition, BedTools (Quinlan et al. 2010) coverage function was used to generate the 
variant window sequence depth (average sequence depth of 5kb window around each variant 
compared). These parameters were compared for animals with high and low imputation accuracy. 

 
RESULTS AND DISCUSSION 

The mean variant and animal-based imputation accuracies are summarized in Table 1. The per 
variant mean imputation accuracy of skim-sequenced data was similar to previously reported 
imputation accuracies from standard genotyping arrays (Nguyen et al. 2021; Nguyen et al. 2024). 
Imputation accuracy by GLIMPSE2 in this study was better when compared to the findings of Lamb 
et al, 2023, who also used GLIMPSE but on low-coverage Oxford Nanopore sequencing data. 

 
Table 1. Mean empirical accuracy of imputation per variant and per animal for dosage or best 
guess genotypes, using different chunks and effective population sizes 
 

 
Mean Accuracy 

Chunk: 4Mb 
Ne:1000 

Chunk: 4Mb 
Ne: 10,000 

Chunk: 4Mb 
Ne: 100,000 

Chunk: 18 Mb 
Ne=1000 

Genotypes Variant Animal Variant Animal Variant Animal Variant Animal 
Dosage 0.962 0.976 0.957 0.974 0.952 0.971 0.960 0.972 
Best-Guess 0.955 0.974 0.953 0.971 0.950 0.970 0.957 0.970 

 
Consistent per variant and per animal imputation accuracies were observed when using different 

imputation chunk sizes (4 Mb and 18 Mb), however, imputation with 4 Mb chunk size was 
computationally efficient. A slight but consistent increase in imputation accuracy was observed for 
decreasing effective population sizes (Ne) which is consistent with the Ne being much lower in 
cattle. Per chromosome imputation accuracy varied a little. Variants with low minor allele frequency 
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(MAF) had slightly higher mean imputation accuracy than those with higher MAF (Figure 1a and 
b). Mean imputation accuracy for Holstein and Jersey was 0.99 and 0.95, respectively. Imputation 
accuracy of 22 animals (Jersey) was less than 0.9. Lower accuracy of Jersey animals may be due to 
the smaller number of Jersey animals in the reference population compared to the Holstein. Out of 
32,614, there were 154 variants with imputation accuracy less than 0.8 (randomly spread genome-
wide). 

Figure 1. Mean accuracy of imputation across chromosomes and MAF bins. a: mean imputation 
accuracy of variants on each chromosome (best guess and dosage genotypes). b: mean imputation 
accuracy of variants grouped by MAF (best guess and dosage genotypes). 

 
A weak correlation of 0.04 was found between the average skim sequence depth of animals and 

their imputation accuracy. The correlation between average sequence depths of imputation chunks 
(4 Mb) and imputation accuracies of animals was 0.1. The correlation between the average variant 
window (5 kb) sequence depth and imputation accuracy of animals was only 0.08. However, a 
distinct difference (p-value < 0.001) was observed in the average sequence depths of animals with 
the highest and lowest imputation accuracies (Figure 2a). Similarly, significant differences were 
observed when comparing the average imputation chunk sequencing depth (p-value < 2.2x10-16) and 
the variant window sequence depth (p-value < 2.2x10-16) between high and low imputation accuracy 
animals (Figure 2b and c).  

Figure 2. Comparison showing different measures of average sequence depth in animals with 
high or low imputation accuracy. a: genome sequence depth. b: sequence depth of imputation 
chunks. c: variant window sequence depth. 
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These differences between high and low imputation accuracy animals suggest that sequencing 
depth is associated with the accuracy of imputation as expected. However, this association could not 
be established at the population level (293 animals). It might be because of the interplay between 
the stochastic nature of the software algorithm and the landscape of the sequence information around 
each variant site within animals that impacts correct haplotyping and therefore imputation (Al 
Bkhetan et al. 2019 and Wragg et al. 2024). The higher average sequencing depth of high imputation 
accuracy animals (~1.5x) suggests that skim sequencing the samples with at least 1.5x depth can 
improve the overall imputation accuracy. The cost of skim sequencing assay with 1.5x depth is 
estimated to still be less than the cost of genotyping with a standard 50K SNP chip. Another 
alternative can be combining the skim sequence genotypes with “target-capture”, a targeted 
sequencing of specific variants for higher coverage genotypes. This is of value for important SNPs 
such as known deleterious mutations that may be missed or have low accuracy in skim sequence 
genotypes. 

 
CONCLUSION 

The imputation accuracy of the skim-sequenced dataset was similar to that obtained by imputing 
standard SNP genotypes to WGS level. Our results suggest optimizing sequence depth versus costs. 
Combining skim sequencing with target capture may further improve the imputation accuracy. 
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